Attentional modulation of firing rate varies with burstiness across putative pyramidal neurons in macaque visual area V4.
نویسندگان
چکیده
One of the most well established forms of attentional modulation is an increase in firing rate when attention is directed into the receptive field of a neuron. The degree of rate modulation, however, can vary considerably across individual neurons, especially among broad spiking neurons (putative pyramids). We asked whether this heterogeneity might be correlated with a neuronal response property that is used in intracellular recording studies to distinguish among distinct neuronal classes: the burstiness of the neuronal spike train. We first characterized the burst spiking behavior of visual area V4 neurons and found that this varies considerably across the population, but we did not find evidence for distinct classes of burst behavior. Burstiness did, however, vary more widely across the class of neurons that shows the greatest heterogeneity in attentional modulation, and within that class, burstiness helped account for differences in attentional modulation. Among these broad spiking neurons, rate modulation was primarily restricted to bursty neurons, which as a group showed a highly significant increase in firing rate with attention. Furthermore, every bursty broad spiking neuron whose firing rate was significantly modulated by attention exhibited an increase in firing rate. In contrast, non-bursty broad spiking neurons exhibited no net attentional modulation, and, although some individual neurons did show significant rate modulation, these were divided among neurons showing increases and decreases. These findings show that macaque area V4 shows a range of bursting behavior and that the heterogeneity of attentional modulation can be explained, in part, by variation in burstiness.
منابع مشابه
Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4
The cortex contains multiple cell types, but studies of attention have not distinguished between them, limiting understanding of the local circuits that transform attentional feedback into improved visual processing. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. We recorded neurons in area V4 as monk...
متن کاملLaminar Organization of Attentional Modulation in Macaque Visual Area V4
Attention is critical to perception, serving to select behaviorally relevant information for privileged processing. To understand the neural mechanisms of attention, we must discern how attentional modulation varies by cell type and across cortical layers. Here, we test whether attention acts non-selectively across cortical layers or whether it engages the laminar circuit in specific and select...
متن کاملStimulus repetition modulates gamma-band synchronization in primate visual cortex.
When a sensory stimulus repeats, neuronal firing rate and functional MRI blood oxygen level-dependent responses typically decline, yet perception and behavioral performance either stay constant or improve. An additional aspect of neuronal activity is neuronal synchronization, which can enhance the impact of neurons onto their postsynaptic targets independent of neuronal firing rates. We show th...
متن کاملChanges in the response rate and response variability of area V4 neurons during the preparation of saccadic eye movements.
The visually driven responses of macaque area V4 neurons are modulated during the preparation of saccadic eye movements, but the relationship between presaccadic modulation in area V4 and saccade preparation is poorly understood. Recent neurophysiological studies suggest that the variability across trials of spiking responses provides a more reliable signature of motor preparation than mean fir...
متن کاملPathways of attention: synaptic relationships of frontal eye field to V4, lateral intraparietal cortex, and area 46 in macaque monkey.
The frontal eye field (FEF) of the primate neocortex occupies a pivotal position in the matrix of inter-areal projections. In addition to its role in directing saccadic eye movements, it is the source of an attentional signal that modulates the activity of neurons in extrastriate and parietal cortex. Here, we tested the prediction that FEF preferentially excites inhibitory neurons in target are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 30 شماره
صفحات -
تاریخ انتشار 2011